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Neurons in the inferior temporal cortex (IT) of the macaque fire more strongly to some shapes than others, but little is known about how
to characterize this shape tuning more generally, because most previous studies have used somewhat arbitrary variations in the stimuli
with unspecified magnitudes of the changes. The present investigation studied the modulation of IT cells to nonaccidental property (NAP,
i.e., invariant to orientations in depth) and metric property (MP, i.e., depth dependent) variations of dimensions of generalized cones (a
general formalism for characterizing shapes hypothesized to mediate object recognition). Changes in an NAP resulted in greater neuronal
modulation than equally large pixel-wise changes in an MP (including those consisting of a rotation in depth). There was also precise and
highly systematic neuronal tuning to the quantitative variations of MPs along specific dimensions to which a neuron was sensitive. The
NAP advantage was independent of whether the object was composed of only a single part or had two parts. These findings indicate that
qualitative shape changes such as NAPs help explain the surplus amount of IT shape sensitivity that cannot be accounted for on the basis
of metric or pixel-based changes alone. This NAP advantage may provide the neural basis for the greater detectability of NAP compared
with MP changes in human psychophysics.
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Introduction
Since the seminal study of Gross et al. (1972), it has been known
that macaque inferior temporal (IT) neurons are shape-selective
(Logothetis and Sheinberg, 1996; Tanaka, 1996). However, little
is known about how to characterize this shape tuning generally,
because most previous studies have used somewhat arbitrary
variations in the stimuli with unspecified magnitudes of the
changes. A generalized cone (GC), formed by sweeping a cross
section along an axis, provides a general formalism for describing
shape and volumes (Marr, 1982; Nevatia, 1982) and has been
hypothesized to provide a basis for characterizing the represen-
tation of simple parts mediating object recognition (Marr, 1982;
Biederman, 1987). The present investigation uses the GC formal-
ism to study systematically the shape sensitivity of IT neurons.

The first aim was to examine the modulation of IT neurons to
nonaccidental and metric variations in the dimensions of GCs.
Nonaccidental property (NAP) variations are those that are pri-
marily unaffected by rotation in depth such as whether a contour
is straight or curved or whether a pair of lines is parallel. Differ-
ences in NAPs have been hypothesized to provide the basis for
basic- and some subordinate-level shape classifications and to
allow recognition of objects at novel orientations in depth (Bied-
erman, 1987). In contrast, metric property (MP) variations, such
as the degree of curvature of a contour or the convergence angle
of a pair of nonparallel lines, are affected by rotations in depth.
Vogels et al. (2001) reported that, in agreement with the human

psychophysical data of Biederman and Bar (1999), IT neurons are
more sensitive to NAP than to MP changes of shaded, two-part
objects under rotation in depth. However, the NAP and MP com-
parisons of Vogels et al. (2001) were performed on different di-
mensions of the shapes; e.g., the NAP might have been for axis
curvature, and the MP might have been for the parallelism of the
sides of the part, if not on different parts. The design of the
present study allowed this analysis to be performed on the same
dimensions and the same shapes, having the advantage of con-
trolling for variations in the number of local features, such as the
number of vertices, that otherwise would be produced by NAP
and MP variations. Apart from the scaling of the relative magni-
tudes of the stimulus differences, another feature of the present
study consists of the reduction (Tanaka, 1996) of shaded, two-
part objects, when possible, to a single part, their silhouettes, or
both, making it possible to examine shape changes uncontami-
nated by the presence of other parts or shading. The GC formal-
ism also allows a systematic, quantitative variation of metric
shape changes along different dimensions. Thus, the second aim
was to examine whether the responses of IT neurons are related in
a well behaved way to changes in this multidimensional, metric
shape space. Such precise tuning for metric shape variations
could support discriminations of shapes that vary only in metric
properties.

Materials and Methods
Subjects
Two male rhesus monkeys served as subjects. Before conducting the
experiments, a head post for head fixation and a scleral search coil were
implanted, under isoflurane anesthesia and strict aseptic conditions. Af-
ter training in the fixation task, we stereotactically implanted a plastic
recording chamber. The recording chambers were positioned dorsal to
IT, allowing a vertical approach, as described by Janssen et al. (2000).
During the course of the recordings, we took a structural magnetic reso-
nance image from monkey 1, with a vitamin E tube inserted at the re-
cording site, and a computed tomographic scan of the skull of monkey 2,
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with the guiding tube in situ. This, together with depth readings of the
white and gray matter transitions and of the skull basis during the record-
ings, allowed reconstruction of the recording positions before the ani-
mals were killed. All surgical procedures and animal care was in accor-
dance with the guidelines of the National Institutes of Health and the
Katholieke Universiteit Leuven Medical School.

Apparatus
The apparatus was identical to that described by Vogels et al. (2001). The
animal was seated in a primate chair, facing a computer monitor (Pana-
sonic PanaSync/ProP110i, 21 inch display) on which the stimuli were
displayed. The head of the animal was fixed, and eye movements were
recorded using the magnetic search coil technique. Stimulus presenta-
tion and the behavioral task were under control of a computer, which
also displayed the eye movements. A Narishige (Tokyo, Japan) micro-
drive, which was mounted firmly on the recording chamber, lowered a
tungsten microelectrode (1–3 M�; Frederick Hair) through a guiding
tube. The latter tube was guided using a Crist grid that was attached to the
microdrive. The signals of the electrode were amplified and filtered, us-
ing standard single-cell recording equipment. Single units were isolated
on line using template-matching software (SPS). The timing of the single
units and the stimulus and behavioral events were stored with 1 msec
resolution on a personal computer (PC) for later off-line analysis. The PC
also showed raster displays and histograms of the spikes and other events
that were sorted by stimulus.

Fixation task
Trials started with the onset of a small fixation target at the center of the
display on which the monkey was required to fixate. After a fixation
period of 300 msec, the fixation target was replaced by a stimulus for 200
msec. If the monkey’s gaze remained within a 1.5° fixation window, the
stimulus was replaced again by the fixation spot, and the monkey was
rewarded with a drop of apple juice. When the monkey failed to maintain
fixation until 100 msec after stimulus presentation, the trial was aborted,
and the stimulus was presented during one of the subsequent fixation
periods. As long as the monkey was fixating, stimuli were presented with
an interval of �1 sec. Fixation breaks were followed by a 1 sec time-out
period before the fixation target was shown again.

Stimuli
The stimuli consisted of gray-level rendered images of objects, composed
of 1 or 2 parts selected from a set of 14 parts. Each could be readily

described as a GC (some of the stimuli are illustrated in Figs. 1, 2).
Qualitative variations in the dimensions of GCs define different NAPs, as
listed in Table 1 and illustrated in Figure 3. For example, if the cross
section remains constant, the sides of the GC will be parallel; otherwise,
they will be nonparallel (e.g., Fig. 3B). The axis could be straight, as in the
case of the pyramid of Figure 3A, or curved, producing a curved pyramid.
The GC formalization allows a parametric variation of shape, and, in
addition, psychophysical results suggest an independent coding of at
least some of these GC dimensions by the human visual system (Stank-
iewicz, 2002). Also, a computer vision model by Zerroug and Nevatia
(1996a,b) that assumed a GC formulation, in particular, that the cross
section was orthogonal to the axis, was able to derive an accurate three-
dimensional description of an object from a single gray-level image.

The objects were rendered by 3D Studio MAX, release 2.5, on a black
background. The images (size, �7°; mean luminance, 13 cd/m 2) were
shown at the center of the display.

Each shaded object had a silhouette and an “outline” counterpart. The
silhouettes had the same outlines as the shaded objects, but the pixels
inside the object contours had a constant luminance. The latter lumi-

Figure 1. The 21 objects that were used to search for responsive neurons.

Figure 2. A, Example of stimuli used in a reduction test, including (top row) a two-part
shaded object (left) and a two-part silhouette (right) and (lower row) a one-part shaded object
(left) and a one-part silhouette (right). B, Top, bottom, Two-part and one-part outlines.
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nance value was equal to the mean luminance of the corresponding
shaded versions of the object. The outline versions of the objects consist
of line drawings (white lines, 0.1° width, on the black background) of the
outer contour of the objects.

The total stimulus set consisted of 1059 gray-level shapes and their
silhouette and outline counterparts. The organizational scheme behind
this vast stimulus set will be described in the next sections.

Testing procedure
Search test. We searched for responsive neurons by presenting 7 two-part
objects and 14 one-part objects (Fig. 1) in an interleaved manner. Each
one-part object was one of the parts of the two-part objects. The same
search set was used throughout the experiment. Both the one- and two-
part objects will be referred to as the “basic” shape, because all other
shapes were variations of these.

After isolating a neuron responsive to at least 1 of these 21 images, we
conducted a reduction test and a varying number of modulation tests,
using as the basic shape the shape the neuron was most sensitive to. We
preferred one-part objects to two-part objects, using the former when-
ever the neuron responded equally or stronger to the one-part objects.
The latter ensured that we were manipulating parts the neuron was sen-
sitive to.

Reduction test. This test compared the responses to the shaded images
and their silhouette versions. Using silhouettes has the advantage of elim-
inating the influence of shading variations (Vogels and Biederman,
2002), so we used silhouette versions instead of the shaded versions in
subsequent tests whenever this was possible without lowering the activity
of the neuron.

The reduction test consisted of four stimuli: the basic shape that was
chosen in the search test, its two- or one-part counterpart (for, respec-
tively, a one- or two-part basic shape), and silhouette versions of these
stimuli (Fig. 2 A). When the basic shape chosen in the search test was a
two-part object, the reduction test used the one-part counterpart that
elicited the biggest response. On the basis of the outcome of this test, we
decided whether to use the silhouette or the shaded version of the basic
shape and to confirm (or discard) our preference for the one- versus
two-part objects. The objects were presented in an interleaved manner,
and on average, five trials were conducted for each condition.

Modulation tests. These tests contained 13 shapes each, presented in an
interleaved manner, and consisted of the basic shape and 12 variations of
that shape. One kind of shape variation consisted of metric changes of the
basic shape along a single dimension. These consisted of two series of
four metric variations of the basic shape. The four variations of each
series were parametrically situated along a single dimension. They are
denoted MP1–MP4, with decreasing similarity with respect to the basic
shape. The two series were varied on different GC dimensions as listed in

Table 1 and illustrated in Figure 3. Figure 4 illustrates two series of four
metric variations, one for each of the two parts of a two-part object.

A second kind of shape variation was an NAP variation of the basic
shape. For each of the two series of metric variations, one NAP shape
variation of the same basic shape was produced. The NAP variations used
are listed in Table 1, and some are illustrated in Figures 3 and 4. Each of
these was paired with a particular metric variation (see Table 1 and Figs.
3 and 4). The NAP versions differed equally or less from the basic shape
than did the MP2 versions (see calibration of image similarities below).
When the two-part objects served as stimuli, only one part was changed
at a time, and the NAP and MP changes were applied to the same part for
a given comparison (Fig. 4). The NAP and MP2 shape changes were kept
small, because (1) we wished to avoid floor effects in modulation, i.e.,
going outside the tuning range of a neuron for the NAP and MP change;
and (2) we wanted to include larger MP differences to compare with the
NAP modulation. Most important, very large MP changes would have
often changed the relative sizes of the geons in the two-part objects, a
stimulus variation (that of the relations between the two geons) that we
sought to avoid in this investigation. A third kind of shape variation
consisted of two rotations in depth of the basic object. The rotated ver-
sions differed in steps of 30°.

Figure 4 shows the conditions of a modulation test for a two-part,
shaded basic shape: two series of four metric variations, two nonacciden-
tal variations, and two rotated-in-depth versions.

We used one to six modulation tests for each neuron (mean, two),
depending on how long we could record from that neuron. The shapes
were shown to the neuron for �20 trials in a randomly interleaved man-
ner. The tests were done with silhouettes or shaded objects, depending on
the outcome of the reduction test. To test whether similar results were
obtained when only the outlines were present, we also used outline ver-
sions of the shapes in some cells. Figure 2 B shows two examples of such
outline versions.

Image similarity measures
We calibrated the difference between the images by computing the Eu-
clidean distance between the gray levels of the pixels of the image of the
basic shape and the images of the nonaccidental, metrically changed or
rotated shapes. Because some neurons might be mainly sensitive to low
spatial frequencies, we also performed low-pass filtering on the images by
using convolutions with Gaussian filters with an SD that increased from
5 to 15 pixels in steps of 5 pixels. For each of the three low-passed image
versions, Euclidean distances between the gray levels for corresponding
pixels were computed. We made sure that the metric shape variation
MP2 differed equally or slightly more from the basic shape than the NAP
variation, this at each of the four possible resolutions. The calibration was
done separately for the one-part objects, the two-part objects, and the
silhouettes and was followed by a � correction.

The gray level analysis compares image similarities as present in the
retinal input without making any commitment to differential sensitivi-
ties to higher-order features. Changes in the image by either nonacciden-
tal or metric changes are treated equally. Thus, any differential sensitivity
to nonaccidental versus metric changes has to originate within the visual
system and cannot be an artifact of retinal image dissimilarities. We went
one step further by computing image distances that were corrected for
relative position (Vogels et al., 2001), assuming an (unrealistically) per-
fect position-invariant representation of shape (Op de Beeck and Vogels,
2000). To do this, we measured the smallest physical distance for 2500
relative positions of images in the comparison, using for each position
the procedure outlined above. This minimum value was taken as the
position-corrected gray-level image similarity. Even for these position-
corrected similarities, the NAP changes equaled or were less than the
MP2 changes.

It is worth pointing out that for the shape variations situated along the
same dimension, the magnitude of the change of the values of transfor-
mations in the 3D Studio software (e.g., “curvature” and “tapering”) for
the NAP and MP2 variations matched quite well; when normalizing the
NAP difference with respect to the basic shape to 1 for each shape trans-
formation, the median MP2-basic shape difference was 1.05 (first quar-

Table 1. Overview of the nonaccidental and metric changes used in this study

Nonaccidental changes Metric changes

Straight main axis versus curved main
axis (Fig. 3A)

Degree of curvature of the main axis

Parallel sides versus nonparallel sides
(produced by expansion of the cross
section) (Fig. 3B)

Amount of expansion of the cross sec-
tion

Straight sides versus curved sides along
the major axis (with positive or nega-
tive curvature) (Fig. 3C,D)

Degree of positive or negative curvature
of the sides

Curved versus straight cross section (e.g.,
a cylinder becomes a brick and vice
versa, or a cone becomes a pyramid
and vice versa)

Changes in aspect-ratio; a part of an
object can vary in length or width, or
it can be stretched, becoming wider
and shorter or narrower and longer

The cross section ends in a point versus
the cross section ends in a side (e.g., a
cylinder or brick with expanding cross
section becomes a cone or a pyramid
or vice versa) (Fig. 3E)
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tile, 1; third quartile, 1.05). This suggests that even for these higher-order
image transformations, the NAP and MP2 changes were well matched.

Analysis
The response of the neuron was defined as the number of spikes during
an interval of 200 –300 msec, starting from 50 –120 msec. The starting
point and duration of the time interval were chosen independently for
each neuron to best capture its response by inspecting the peristimulus
time histograms but were fixed for a particular neuron. Each neuron
responded significantly to at least one of the objects used in the experi-
ment, which was tested by an ANOVA. Parametric (ANOVA) and, when
possible, nonparametric statistical tests were used to compare responses
to different stimuli.

Fitting the response with quadratic surfaces using image metrics
Many neurons were tested with at least 16 metric variations of the same
basic shape, yielding, when including the basic shape, at least 17 metri-
cally different shapes. Each of these shapes had a value according to

Figure 3. Responses of five single IT neurons to the basic object (middle), the NAP variation
(left), and the equally large MP2 variation (right). A–D, Comparisons each situated on a single
GC dimension within a row, but different dimensions between rows, the dimensions being
(A–D, respectively) curvature of the main axis, expansion of the cross section, positive curvature
of the sides, and negative curvature of the sides. In comparison E, the NAP and MP variations are
situated on separate GC dimensions, the NAP change being the cross-section ending in a point

Figure 4. Conditions of a modulation test for a two-part basic object: two series of four
metric variations, consisting of variations in the aspect ratio of the top part in 1 and the curva-
ture of the axis of the bottom part in 2, two nonaccidental variations, produced by keeping
constant the size of the cross section of the top part in 1 and having a straight axis of the bottom
part in 2, and two rotated-in-depth versions of the basic object. When the basic object consisted
of one part, the second series of metric and nonaccidental variations were along different
dimensions.

4

versus the cross section ending on a side and the MP change being a change in aspect ratio. The
vertical lines on the poststimulus time histograms indicate the stimulus onset and offset. The
stimulus duration was 200 msec (see time scale of top left histogram). Bin width is 20 msec.
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several ad hoc defined image metrics, and multiple regression was used to
fit the neural responses to the shapes in this metric image space.

The following simple image metrics proved to be valuable in fitting the
single-cell responses to the one-part stimuli: (1) degree of expansion of
the cross section, defined as the ratio of the smallest to the largest width
of the stimulus; (2) degree of curvature, which was computed by isolating
the curved segment at the left side of the stimulus and then drawing a
straight line between the two end points of the curve, followed by a
division of the maximal perpendicular distance between the straight line
and the curve by the length of the straight line; using the right side of the
stimulus instead of its left side produces correlated curvature measures;
(3) average broadness, defined as the area of the image of the object
divided by its maximal vertical extent; and (4) average height, defined as
area divided by its maximal horizontal extent.

Only metrics that were actually varying in the set of one-part stimuli
shown to that neuron were used when fitting the responses of a neuron.
Average broadness and average height were used for the shape variations
of all one-part stimuli. Expansion of the cross section was used for the
shape variations of Figure 1, O, I, R, and U. Curvature of the main axis
was used in Figure 1, H, P, J, S, and M. Curvature of the sides was used in
Figure 1, K, L, N, Q, and T. Thus each one-part shape was defined by three
metrics. For the two-part stimuli, average broadness and height were
calculated over the entire object. The other metrics were computed for
the two parts separately. Therefore, when fitting the responses to the
two-part stimuli, four metrics were used: average broadness, average
height, a metric specific to the top part of the stimulus, and a metric
specific to the bottom part of the stimulus.

A (hyper)surface, Y � a � bX1 � cX1
2 � . . . � hXn � iXn

2, with Xi

being the values of the shapes on the n (3 or 4) different metrics, was fitted
to the normalized responses of a neuron to these shapes. The response of
a neuron to a shape was normalized by dividing it by the response of the
neuron to the basic shape. This normalization was meant to control for
possible test-to-test variability in the mean response, because different
variations were shown during different successive modulation tests in
which the basic shape is the only constant stimulus. An iterative Gauss–
Newton least square algorithm was used to fit the model to the data. The
explained variance of the responses by the model was computed as the
squared Pearson correlation coefficient of the actual normalized re-
sponse and Y. To assess whether the observed explained variance is sig-
nificantly different from the explained variance, which would be ex-
pected when the responses were randomly related to the stimuli, we
randomly permuted the normalized responses and fitted these using a
quadratic model with the same number of dfs as in the original model,
and this procedure was executed 1000 times. We decided that the fit of
model and data were significant when the explained variance of the
model for the original, unpermuted responses was equal to or larger than
the 95th percentile of the distribution of the explained variance of the
models for the permuted responses (permutation test). A similar proce-
dure was used to compute fits to single metrics (see Results).

Results
The data set consists of 162 responsive anterior inferior temporal
(TE) neurons, 88 in monkey 1 and 74 in monkey 2. These neu-
rons responded well to the shapes we used. Their mean best re-
sponse (maximal response across the several NAP–MP shape
variations, i.e., for the best stimulus for a given neuron, averaged
over neurons) was 27 spikes/sec with a mean baseline activity of
5.4 spikes/sec. These values compare well with those reported in
other studies using more complex images (Jagadeesh et al., 2001;
Baker et al., 2002).

On the basis of the inspection of the anatomical imaging data
and depth readings, we conclude that the neurons responding to
these relatively simple shapes were from the ventral bank of the
rostral superior temporal sulcus and, mainly, from the lateral part
of anterior TE.

Comparison between the response modulation to the
nonaccidental and metric variations
Table 1 and Figure 3 provide an overview of the different nonac-
cidental and metric variations used in this study. In Figure 3, the
differences between the objects in the left column and the basic
object (middle column) are nonaccidental; i.e., they remain in-
variant under most rotations in depth. The objects in the right
column differ from the basic object in metric properties, which
are continuously affected by rotation in depth. For example, in
Figure 3A, the axis of the pyramid on the left (the NAP variation)
remains “straight” under all viewpoints, in opposition to the axis
of the pyramid in the middle (the basic shape) that remains
curved under most viewpoints. The MP variation and the basic
shape, on the other hand, differ only in their degree of curvature,
a property that varies with rotation.

In each of the examples in Figure 3A–D, the different objects
are situated on a single GC dimension (see Table 1, top three
rows). As noted earlier, these intradimensional comparisons pro-
vide a way to compare NAP and MP differences but to hold
constant the number of local features, e.g., changes in the number
and type of vertices, produced by such changes. This is important
because the potential difference between the response modula-
tions to NAP and MP changes could otherwise be attributed to a
change in the number of local specific features, such as vertices.

In addition to intradimensional changes, we also compared
for the same neurons NAP and MP changes of the basic object
when these were situated along different dimensions, as in the
study by Vogels et al. (2001). Figure 3E represents an example of
such a comparison between dimensions (other cross-
dimensional comparisons involved the other NAP changes listed
in Table 1 and aspect ratio changes as MP changes). Note that in
this case, NAP and MP changes can be confounded with differ-
ences in the number of local features. Because of the important
distinction between comparisons within one dimension and
comparisons between dimensions, we will present the results for
these comparisons separately.

Intradimensional comparisons
Figure 3, A–D, shows the responses of four different neurons to
the basic shape and its NAP and MP2 variation. The image sim-
ilarity between the NAP and the basic shape was equated with the
similarity between the MP2 and basic shape for each NAP–MP2
pair (see Materials and Methods). Despite this equal image sim-
ilarity, the four neurons show more modulation for the NAP than
for the MP change.

To determine the distribution of the neuronal modulation to
these changes, we computed the percent modulation for each
possible comparison of NAP versus the basic shape and MP2
versus the basic shape as follows: �(response basic shape � re-
sponse object variation)/(response basic shape)� � 100. Overall,
for all 162 neurons with 243 NAP–MP2 comparisons, the mean
percent modulation to the NAP change was 34%, which was
significantly higher ( p � 0.000002; n � 243; Wilcoxon matched
pairs test) than the 26% modulation to the physically equal MP2
change.

Figure 5A plots the frequency distributions of the response
modulations for all intradimensional NAP–MP2 comparisons
(n � 243, 162 neurons). The modulation for the NAP change was
larger than the modulation for the MP2 change in 63% of the
comparisons, which is significantly larger than 50% (binomial
test, p � 0.0001).

The metric change could have up to four different values
(MP1–MP4), which made it possible to determine how large the
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MP change had to be to produce a response modulation equiva-
lent to that produced by the NAP change. To do that, the four MP
image changes were expressed in NAP image change units (the
NAP change was arbitrarily set at 100%), and the percent re-
sponse modulation values with respect to the basic shape were
averaged across the different sorts of MP changes. Figure 6A
shows the resulting average response modulation for the NAP
and the four different MP changes. As noted above, the mean
percent modulation to the NAP change was 34%, which was
significantly higher than the 26% modulation to the MP change,
MP2, which was equivalent in terms of stimulus change. Figure
6A also shows that the modulation for the NAP change was sim-
ilar to that obtained with the physically much larger MP3 change.
Indeed, one needs a metric change that is �1.5 times larger in
Euclidean image distance (as shown in Fig. 6A) or approximately
two times larger in Manhattan distances (or City Block, sum of

absolute instead of squared distances) than the nonaccidental
change to have an equally large response modulation.

Similar results were obtained when computing absolute re-
sponse differences instead of percent response modulations; the
NAP change and MP2 change produced average absolute re-
sponse differences of 5.3 and 3.9 spikes/sec, respectively. This
NAP advantage was statistically significant ( p � 0.000001; n �
243; Wilcoxon matched pairs test).

The difference between the neuronal response modulation for
the NAP and MP2 change was significant in both monkeys, and
there was no significant difference between the monkeys in the
magnitude of their NAP effects (Kolmogorov–Smirnov two-
sample test, p � 0.05). As expected when searching for responsive
neurons with the basic shapes, overall, the neurons responded
somewhat stronger to the basic shape than to the NAP change:
the response to the basic shape was greater than the response to
the NAP change in 63% of the cases, which is significantly differ-
ent from 50% (binomial test, p � 0.05). It is interesting to note
that the response to the MP2 change was smaller than the re-
sponse to the basic shape in only 54% of the cases, which does not
differ significantly from 50%.

An ANOVA on the percent modulation using NAP versus
MP2 and the four different sorts of NAP–MP changes (curvature
of the main axis, positive curvature of the sides, negative cur-
vature of the sides, and expansion of the cross section) as fac-
tors produced no significant interaction of these two factors
(F(3,240) � 0.53; not significant), suggesting that the greater mod-
ulation for NAP compared with MP changes was not caused by a
single dimension or a few of the dimensions we manipulated but
is a general effect.

For some sorts of changes (e.g., parallelism of the sides and
positive curvature of the sides), the NAP variation is smaller in
size than the basic shape, which is smaller than the MP2 variation,
whereas for others, the reverse is true (e.g., negative curvature of
the side). The NAP advantage was significant when the NAP
variation was smaller than the basic shape–MP2 variation (mean
modulation, 34 vs 25%; p � 0.0005; n � 98) and when the latter
was not the case (34 and 27%; p � 0.0065; n � 145). This indi-
cates that the NAP advantage is attributable to a shape and not a
size difference.

Cross-dimensional comparisons
Very similar results were obtained when comparing NAP and MP
changes when these were varied along different dimensions. Fig-
ure 5B plots the frequency distributions of the response modula-
tions for all cross-dimensional NAP–MP2 comparisons (n � 268,
121 neurons). The modulation for the NAP change was larger
than the modulation for the MP2 change in 65% of the compar-
isons, which is significantly larger than the 50% rate expected by
chance (binomial p � 0.0001). The mean percent modulation to
the NAP change was 33%, which is significantly higher ( p �
0.000001, Wilcoxon matched pairs test) than the 21% modula-
tion to the equally large MP2 stimulus variation (Fig. 6B). Again,
one needs a metric change that is �1.5 or 2 times larger in Eu-
clidean or City Block distance measures, respectively, than the
nonaccidental change to have an equally large response modula-
tion (Fig. 6B). The NAP and MP2 changes produced average
absolute response differences of 6.3 and 3.9 spikes/sec, respec-
tively. This NAP advantage was statistically significant ( p �
0.000001; n � 268; Wilcoxon matched pairs test).

The greater modulation for NAP compared with MP changes
was significant in both monkeys, and there was no significant

Figure 5. A, Frequency distributions and scatter plot of the response modulations for all
intradimensional NAP–MP2 comparisons (n � 243, 162 neurons). B, Frequency distributions
and scatter plot of the response modulations for all cross-dimensional NAP–MP2 comparisons
(n � 268, 121 neurons).
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difference between the monkeys in the size of the NAP effect
(Kolmogorov–Smirnov two-sample test, p � 0.05).

The response to basic shape was greater than the response to
the NAP and MP2 variation in 67 and 57% of the cases,
respectively.

The NAP advantage was independent of the relative sizes (ar-
eas) of the NAP, MP2, and basic shape stimuli. Thus greater
modulation to NAP compared with MP2 stimuli was evident
( p � 0.01, Wilcoxon matched pairs test in all comparisons) when
the NAP version was smaller or larger in area than both the MP2
version and the basic shape or when the NAP and MP2 versions
were both smaller or larger than the basic shape.

Features possibly causing the NAP advantage
In 73% of the cases, the NAP involved a change from curved to
straight lines. To determine whether the overall NAP advantage
we reported above is mainly attributable to the curvature–
straight edges distinction, we compared the NAP and MP2 mod-
ulations for two groups of cases, one group in which the NAP
change involved a curvature–straight edge change and a second
group in which it did not. The degree of modulation between the
two groups was very similar (Table 2), indicating that the NAP
advantage is not solely attributable to the curvature–noncurva-
ture distinction.

Another potential feature might be the presence or absence of
a point at the end of the shape, a feature manipulated in 7% of the
cases. However, as for the curvature–noncurvature distinction,
the NAP advantage was present whether an end point feature was
manipulated (Table 2). Also, the average neuronal modulation
attributable to the NAP change (29 � 3%) was significantly larger
than that for the MP2 change (21 � 3%) in those cases in which

neither a curvature nor an end point feature change was manip-
ulated (Wilcoxon matched pairs test, p � 0.002; n � 97).

Silhouettes, outlines, and one- and two-part
objects compared
To simplify the stimuli as much as possible, we reduced two-part
objects to one-part objects, their silhouette, or both (see Materi-
als and Methods, Reduction test) whenever this was possible
without decreasing the neuronal response. The modulation tests
were run on the reduced images. We were able to reduce the
two-part objects to single parts in 50% of the neurons; i.e., in half
of the neurons, the response to a single part was at least as strong
as to the two-part object. In 65% of the neurons, the silhouette
produced a response at least as strong as the shaded version.

In the above analysis of the NAP–MP differences, all compar-
isons were pooled, irrespective of whether a one- or two-part
shaded object or a one- or two part silhouette was used in the test.
In addition, 25 neurons were included that were tested with out-
lines (see Fig. 2B). However, as shown in Table 3, the greater
neural modulation of changes in NAPs compared with MP2
changes holds within each of these image categories. There was no
significant difference among shaded objects, silhouettes, and out-
lines or between one- and two-part objects in their greater sensitivity
to NAP compared with MP differences (ANOVAs, p � 0.05).

Because silhouettes lack luminance variations within their
contours, and single-part object are less complex than two-part
objects, the single-part silhouettes are a favorable image category
to test for differential response modulations to NAP versus MP
changes. Fifty-seven neurons were tested with single-part silhou-
ettes, and the results for the intradimensional comparisons are
shown in Figure 6C. For this subsample of neurons, the response

Figure 6. A, Response modulation for the NAP and the four different MP changes for all intradimensional NAP–MP comparisons, averaged over 243 cases (162 neurons). B, Response modulation
for the NAP and the four different MP changes for all cross-dimensional NAP–MP comparisons, averaged over 268 cases (121 neurons). C, Response modulation for the NAP and the four different MP
changes for all intradimensional NAP–MP comparisons in which the basic object is a one-part silhouette, averaged over 57 cases (57 neurons). The mean percentages of image change (mean
Euclidean distance) are indicated below the label of the shape variations with the mean percent change of the NAP stimuli set at 100%. Error bars indicate SEM.

Table 2. Mean modulation to nonaccidental and metric changes for different kinds of shape changes

Shape change
Modulation to
NAP change (%)

Modulation to
MP2 change (%) SE, NAP (%) SE, MP2 (%) n

Significance level
(Wilcoxon matched pairs)

Change in curvature 34 23 2 1 376 p � 0.000001
No change in curvature 34 25 2 3 135 p � 0.000092
Presence versus

absence of a point 47 34 4 4 38 p � 0.005901
No presence versus

absence of a point 33 23 2 1 473 p � 0.000001
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modulation was significantly larger for the NAP (37%) compared
with the MP2 (25%) changes (Wilcoxon matched pairs test, p �
0.0003; n � 57). This comparison rules out a possible confound
of shading variations and firmly establishes that for simple one-
part shapes, IT neurons are, on average, more sensitive to nonac-
cidental than to metric changes. Again, the average response
modulation for the NAP change was at least of the same magni-
tude as that obtained for the physically much larger MP3 change.
This is shown for a single neuron in Figure 7.

Rotation-in-depth compared with intraview shape changes
The shape changes we studied so far occurred within a single
view. Given that a potential value of NAPs in representing shape
derives from the invariance such properties afford to rotation in
depth (Biederman and Gerhardstein, 1993; Biederman and Bar,
1999), we also tested the effect of rotating the basic object and
compared this with that obtained when changing an NAP or MP
without rotating the object. We will only present results of rota-
tions of shaded or silhouette one-part objects, because those from
the two-part objects are difficult to interpret. Whereas the MP
and NAP changes were applied to only one of the parts of a
two-part object, rotating the object usually affects both parts. We
studied rotations along the vertical axis only, and the effect of this
rotation was studied only for those basic objects for which the
rotation affected their projected shape.

In 33 cases, the rotation changes were physically equally dis-
tant from the basic shape compared with the MP2 and NAP
changes (according to the image calibration; see Materials and
Methods). We made sure that in these cases, the rotation caused
no nonaccidental changes (Biederman and Bar, 1999). As ex-
pected, the NAP change produced a significantly larger modula-
tion than the MP2 change (NAP modulation, mean � SE, 29 �
4%; MP2, 19 � 3%; Wilcoxon matched pair test, p � 0.005).
Interestingly, the mean effect of rotation (19 � 3%) was highly
similar to that of the metric change and significantly smaller than
that for the NAP change (Wilcoxon matched pair test, p � 0.03).

Because we had a larger number of MP changes (i.e., MP1–
MP4) than NAP changes, and thus more opportunities to match
the physical similarity with rotation changes, we performed a
subsequent analysis on a much larger sample consisting of metric
and rotation changes that were physically equal with respect to
the basic single-part shape. In this sample of 68 cases, there was
again no significant difference in response modulation when
comparing the rotation (22 � 3%) and metric changes (17 � 2%;
Wilcoxon matched pairs test, p � 0.05), although the modula-
tions attributable to rotation tended to be larger than those ob-
tained for the equal metric change.

Both these analyses indicate that for these simple shapes, ro-
tation produces response modulations, but these are, on average,
smaller than those produced by NAP changes and similar in size
to those produced by metric property changes.

Consistent, dimension-dependent neuronal modulation to
metrically varied shapes
Figure 6 clearly shows that these IT neurons were sensitive to the
degree of the metric change, the average modulation becoming
larger with decreasing similarity between the basic shape and its
metric variations. Many of these neurons were tested with at least
17 shapes that differed in metric properties. Thus the question
arose of whether the responses of the neurons to these metrically
varied images are related in a systematic, consistent way to simple
image metrics. As explained in Materials and Methods, each of
these objects could have a value on each of three (for the one-part
objects) or four (for the two-part objects) ad hoc-defined image
metrics. For each object, the metrics were average broadness and
length, supplemented by one or two of the following: curvature of
the main axis, expansion of the cross section, and curvature of the
sides. These metrics can be used to define underlying dimensions
along which the shapes are varied and to examine whether the
responses of the neurons are related in a consistent way to
changes in this multidimensional, metric shape space.

We used quadratic (hyper)surfaces (see Materials and Meth-

Figure 7. Responses of an IT neuron to one-part silhouettes illustrating an NAP change, a basic shape, and four different MP changes. The NAP and MP changes are situated on the same
dimension, namely expansion of the cross section. Conventions are the same as in Figure 3. This cell shows markedly greater modulation to the NAP changes than the MP changes.

Table 3. Mean modulation to nonaccidental and metric changes for different kinds of shapes

Shape
Modulation to
NAP change (%)

Modulation to
MP2 change (%) SE, NAP (%) SE, MP2 (%) n

Significance level
(Wilcoxon matched pairs)

Shaded 36 27 4 3 131 p � 0.0004
Silhouette 31 21 2 1 319 p � 0.000001
Outline 44 32 5 4 61 p � 0.003
One-part 36 22 2 1 232 p � 0.000001
Two-part 32 25 2 2 279 p � 0.00001
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ods) to fit the neuronal responses to the shape space. Figure 8
shows the responses of a neuron to 12 of the 25 objects with which
it was tested. Each of the 25 objects has a value on each of three
metric dimensions: (1) curvature of the main axis, (2) average
broadness, and (3) average length (see Materials and Methods).
The quadratic model using these three dimensions explained
82% of the variance of the response of this neuron to the set of 25
objects ( p � 0.001; see Materials and Methods). When the fit was
performed for each dimension separately, it was significant for
average broadness and average length ( p � 0.001) but not for
curvature. Indeed, it is clear from Figure 8 that the neuron was
more modulated by changes in length and width than by changes
in curvature.

Seventy-five IT neurons were tested with 17 or 25 (average,
21) metrically varying shapes. For this set of neurons, the qua-
dratic model resulted in a median explained variance of 85%,
which is surprisingly large considering the trial-to-trial response
variability of single cells. The distribution of the explained vari-
ance is shown for the one- and two-part shapes separately in
Figure 9. The median explained variances were 83 and 86%, re-
spectively, for the one-part (three dimensions; n � 42 neurons)
and two-part (four dimensions; n � 33) objects. The fit of the
model was statistically significant in 62 (82%) of the neurons. The
median explained variance of the model with randomly per-
muted responses was much smaller, being only 34%. Replacing
broadness and length by area reduced the median explained vari-
ance from 85 to 68%, indicating that both broadness and length
and not merely area (or amount of luminance) influence the
responses. These excellent fits of the quadratic model show that
the IT responses to a parameterized set of metrically varied shapes
are highly consistent and can be systematically related to simple
metric dimensions.

The consistency in modulation was rarely equally divided be-
tween dimensions. To quantify this differential effect of dimen-
sion, we determined the explained variance for each dimension
separately. When ranking within each neuron the dimensions

according to their explained variance, it turned out that the best
dimension had a median explained variance of 56%, and the
unidimensional fit was significant in 66 (88%) of the neurons.
The second-best dimension yielded a median explained variance
of 30% [significant in 44 (58%) of the neurons], whereas the
third-best dimension explained 16% [significant in 22 (29%) of
the neurons]. Four dimensions were tested in 33 neurons. The
median explained variance of the worst-ranked dimension was
only 8%, and only in three (10%) of the neurons was the fit still
significant.

Different neurons were modulated by changes within differ-
ent dimensions. Figure 10 presents the unidimensional fits for
two neurons that were shown the same stimuli. The response of
one neuron was strongly and consistently modulated by broad-
ness but not length, whereas the opposite was true for the other
neuron, clearly indicating that the modulation is dimension-
dependent in a neuron-specific way.

The goodness of fit for the quadratic functions does not nec-
essarily indicate that neurons are tuned for the metric (e.g., as for
orientation in primary visual cortex) but may instead reflect a
monotonic increase or decrease in response with an asymptote
(as seen, for example, in many contrast response functions) or an
“inverted” tuning function with a minimum. This possibility can
be appreciated in Figure 10B, where the responses of one neuron
to 17 shapes are fitted using a single dimension. The function
fitting the responses looks similar to a monotonically increasing
function. However, in reality it could be an inverted tuning func-
tion with a minimum with increasing responses as the shapes
become shorter than a 2° visual angle or a classical tuning func-
tion with one optimal value when the responses would show a
decrease in response to longer shapes. Given the computational
advantages of classical tuning functions for representing image
similarities (Edelman, 1999), we assessed whether at least some of
the neurons were representing the metric shape variations with a
classical tuning curve by examining the fits of each dimension
separately, and this for each neuron. For this, we examined 59
cases in which the image variations along a single dimension
explained at least 55% of the response variance; i.e., the quadratic
function fitted the responses reasonable well. We judged the
function to be a tuning function when (1) its optimum or mini-
mum was located within the sample range, and (2) the absolute
difference in response between either the minimum or the max-
imum of the function and the points at the extremes of our sam-
ple range was at least 20% of the maximum response of the neu-
ron. This should be true in both directions from the optimum or

Figure 8. Responses of an IT neuron to 12 of the 25 shapes that were shown to the neuron.
Conventions are the same as in Figure 3.

Figure 9. Distribution of the explained variance of the quadratic model fitting the responses
of the neurons to 17 or 25 metrically varying shapes using three or four metric dimensions. The
results are shown for the one- and the two-part stimuli separately.
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minimum. To avoid designating functions as tuned on the basis
of just a few outliers, we added the criterion that at both sides of
the minimum or maximum, it should be possible to pick out
three data points that are monotonically increasing or decreasing
relative to each other. Figure 11 presents a unidimensional fit for
one neuron, based on the broadness dimension, which fulfilled
these criteria. The maximum of the function and the two points
at the extremes of our sample range are indicated with arrows.
The absolute difference between the response at the left extreme
and the maximum response is 46% of the maximum response,
and the absolute difference between the response at the right
extreme and the maximum response is 61%.

In general, 15 (25%) of the examined functions fulfilled these
criteria and were judged to be clear examples of tuning curves. Of
these 15 functions, 12 had an optimum and thus corresponded to
a classical tuning function, and 3 had a minimum or a inverted
tuning function. The large majority of the functions resembled
monotonically increasing or decreasing functions, but it is possi-
ble that when using a large range of stimulus variations, some of
these neurons would also be found to be tuned to the metric
dimensions.

Discussion
This study shows that the sensitivity of IT neurons to shape
changes depends on the kind of shape change that is tested. IT
neurons are, on average, more sensitive to NAP than to MP
changes. Thus, there are feature differences, such as straight or
curved and parallel or nonparallel sides, that represent important
discontinuities in the representation of shape images at the level
of IT. The greater modulation to NAP changes compared with
MP changes is consistent with the human psychophysical finding
that NAP changes are, in fact, more detectable than MP changes

when the changes are of equivalent stim-
ulus magnitudes (Biederman, 1995).

Our conclusion of the higher sensitiv-
ity to NAP versus MP changes depends
critically on the calibration of the physical
shape changes. Following other studies
(Grill-Spector et al., 1999; Kourtzi and
Kanwisher, 2000; Vogels et al., 2001;
James et al., 2002; Vuilleumier et al.,
2002), we scaled the image differences us-
ing pixel-wise gray-level similarities
(Adini et al., 1997). Using these image
similarity measures, the NAP changes
were equal or smaller than the MP2
changes, leading to the conclusion that the
larger IT neural sensitivity for NAP versus
MP changes is not attributable to retinal
image differences but instead originates in
the feature sensitivity of the visual system.
The magnitudes of the modulations for
the NAP and MP2 changes were modest,
which was to be expected given the rela-
tively small shape changes that we used. It
should be noted that modest neural re-
sponse differences are meaningful, as
shown by the growing literature on the
relationship between perceptual discrim-
ination thresholds and single-cell re-
sponses (for review, see Parker and New-
some, 1998).

The present results regarding the
NAP–MP comparison extends those of

Vogels et al. (2001), who used two-part, shaded objects for which
the NAP and MP change occurred along different dimensions
and, in some cases, for different parts. In the present study, we
reduced the stimulus in many cases to a one-part silhouette and
used intradimensional shape changes within the same view. The
latter not only facilitates calibration of the image differences but
also excludes possible confounding factors such as differences in
shading and differences in the number of local features. We were

Figure 10. Unidimensional quadratic fits for two neurons that were shown the same stimuli. A, Unidimensional fit for cell 1
based on broadness. B, Unidimensional fit for cell 1 based on height. C, Unidimensional fit for cell 2 based on broadness. D,
Unidimensional fit for cell 2 based on height.

Figure 11. Unidimensional quadratic fit for one neuron based on broadness. The maximum
of the function and the two points at the extremes of our sample range are indicated with
arrows. The absolute difference between the response at the left extreme and the maximum
response is 46% of the maximum response, and the absolute difference between the response
at the right extreme and the maximum response is 61%.
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even able to demonstrate the larger sensitivity for NAP changes
using simple line drawings of the outer contours of the shapes.

Our data cannot determine where in the visual hierarchy this
differential sensitivity occurs. Work in the cat (Dobbins et al.,
1987; Versavel et al., 1990) and monkey (Kobatake and Tanaka,
1994; Gallant et al., 1996; Pasupathy and Connor, 1999; Hegde
and Van Essen, 2000) showed that visual neurons in earlier visual
areas show selectivity to curved stimuli, which is one of the fea-
tures we manipulated. However, it is unclear from these studies
whether the response of a population of these neurons shows a
stronger modulation for straight versus curved than when chang-
ing the degree of curvature of a curved stimulus.

Whether the sensitivity bias toward NAPs is genetically deter-
mined, i.e., reflects innate, “privileged” dimensions, or instead
results from experience with objects during development is un-
known. During the experiment, the monkeys were exposed as
frequently to the NAP as to the MP variants of a basic shape (the
search for responsive neurons was done on purpose with the
“neutral” basic shape), so that the bias for NAP changes cannot
have resulted from differential exposure to NAPs during the ex-
periment. However, exposure during development might have
induced the NAP advantage. Indeed, single IT neurons may learn
to respond similarly to temporally contiguous images (Foldiak,
1991; Wallis, 1998) (for physiological evidence, see Miyashita,
1988). Because NAPs are more robust than MPs to viewpoint
variation, images of objects seen from temporally contiguous
viewpoints will differ more in MPs than in NAPs, which can
produce a learning-induced broader tuning for MPs compared
with NAPs.

The larger modulation for NAPs is an average effect; not all
neurons show it for a given dimension, and a given neuron may
show it for one but not another shape dimension. Also, there is no
evidence for a clear segregation between neurons responding ex-
clusively to NAP changes and neurons responding equally to
NAP and MP changes. The better tuning for NAP changes com-
pared with MP changes is distributed among neurons: there is a
more precise representation of NAP versus MP changes at the
population level only. Indeed, our results also demonstrate that
IT neurons show well behaved tuning for metric changes, and
their responses nicely reflect at least ordinal differences in image
similarity along metric dimensions, because these could be fitted
remarkably well by smooth quadratic functions. The latter holds
as long as no NAP changes are present, because these may lead to
a larger change in response than expected from the (extrapolation
of the) metric tuning function. This correspondence between
neuronal modulation and the physical similarity among shapes
that differ in MPs fits a similar equivalence between perceived
similarity and the physical similarity of metrically varied two-
dimensional (Biederman and Subramaniam, 1997) and three-
dimensional shapes (Nederhouser et al., 2001). These results also
accord with our previous report (Op de Beeck et al., 2001) of an
ordinally faithful representation of similarities among a set of
parametrized shapes at the behavioral level in primates as well as
at the IT neuronal level. However, in that study, no distinctions
were made between different sorts of shape changes; thus some of
the discrepancies between the neuronal and physical similarities
might have been attributable to a differential sensitivity of IT
neurons to different kinds of shape changes.

Several studies have documented tuning of most macaque IT
neurons to different views of the same object (Logothetis et al.,
1995; Booth and Rolls, 1998; Vogels et al., 2001). In the present
study, we compared shape changes attributable to rotating an
object and intraview MP and NAP changes. For the relatively

simple single-part shapes we used, rotating an object modulated
the average response of IT neurons by more or less the same
amount as an MP change but less than an NAP change. The latter
is expected, because rotation produces (at least) MP changes, and
we show that neurons are sensitive to MP changes. However,
rotation in depth may also produce accidental NAP changes, as
when a bent wire projects a loop at one view but not another
(Biederman and Gerhardstein, 1993), and without control or
specification of such changes, the degree to which the apparent
effects of rotation are consequences of NAP changes is unclear.

It is generally believed that object recognition and categoriza-
tion are based on the activity pattern across a set of neurons that
are tuned to object features of different complexity (for review,
see Riesenhuber and Poggio, 2002). The specificity of object rec-
ognition is derived from the feature selectivity of the neurons, i.e.,
different objects producing different activation profiles, whereas
the invariance for image transformations such as position and
scale is derived from an invariance to these image transforma-
tions of the feature selectivity, e.g., an object at different locations
producing similar activation profiles. Some computational theo-
ries have suggested, however, that some features are more rele-
vant than others for the categorization of objects, namely those
that are affected less by changes in the object-imaging process,
i.e., NAPs (Biederman, 1987), and it has been suggested that
(theoretical) units would incorporate this by being more strongly
tuned to the relevant than the less relevant features (Hummel and
Biederman, 1992; Vetter et al., 1995). So-called view-based mod-
els of object recognition have so far incorporated only position
and scale as irrelevant “features” (Edelman, 1999; Riesenhuber
and Poggio, 2002), whereas the structural description model of
Hummel and Biederman (1992) has units tuned to NAPs. The
MP changes we used are shape changes and not changes in scale,
so future view-based models have to incorporate the observed
bias for NAP changes over the MP shape changes. Our results
with the MPs alone even suggest that biases for different kinds of
shape changes in a single neuron are commonplace, and that IT
neurons can no longer be defined solely by their most preferred
stimulus but also by their differential selectivity for different sorts
of shape changes.

The observed NAP advantage is consistent with one of the
assumptions of the geon structural description (GSD) model
(Biederman, 1987; Hummel and Biederman, 1992). Geons are
the shape primitives of the GSD model and are defined by con-
trasting NAPs, a distinction not incorporated into current view-
based models. View-based models could be modified to incorpo-
rate the NAP advantage without including other assumptions of
GSDs (or structural descriptions, in general), such as the explicit
coding of the relationships among object parts. In general, the
present work shows that the use of a computationally inspired
parameterization of shapes can provide at least hints of the prin-
ciples behind shape coding by primates.
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