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ABSTRACT—What information is used for sorting pictures

of complex stimuli into categories? We applied a reverse

correlation method to reveal the visual features mediating

categorization in humans and baboons. Two baboons and

6 humans were trained to sort, by species, pictures of hu-

man and baboon faces on which random visual noise was

superimposed. On ambiguous probe trials, a human-ba-

boon morph was presented, eliciting ‘‘human’’ responses

on some trials and ‘‘baboon’’ responses on others. The

difference between the noise patterns that induced the two

responses made explicit the information mediating the

classification. Unlike the humans, the baboons based their

categorization on information that closely matched that

used by a theoretical observer responding solely on the

basis of the pixel similarities between the probe and

training images. We show that the classification-image

technique and principal components analysis provide a

method to make explicit the differences in the information

mediating categorization in humans and animals.

Pigeons and monkeys can be trained to classify pictures of

natural or artificial objects into distinct categories (Delorme,

Richard, & Fabre-Thorpe, 2000; Herrnstein, 1990; Herrnstein

& Loveland, 1964; Roberts & Mazmanian, 1988; Schrier &

Brady, 1987; Vogels, 1999a), such as ‘‘trees’’ or ‘‘humans,’’ and

they can generalize their behavior to previously unseen exem-

plars of those categories. However, it is not clear what infor-

mation the animals use to achieve their classifications. Some

researchers have argued that performance reflects the animals’

‘‘natural concepts’’ (Herrnstein & Loveland, 1964), implying

that the animals recognize the objects represented in the pic-

tures and use the information at a conceptual level. Others have

proposed that accurate categorization of pictures can be medi-

ated by nonconceptual processes (Fagot, Martin-Malivel, &

Dépy, 1999), in which animals focus on a subset of perceptual

features associated with each category, such as the presence of a

distinctive color patch (D’Amato & van Sant, 1988). In this case,

animals could categorize the stimuli using image characteristics

without necessarily recognizing the objects represented in the

pictures (Fagot, 2000). Identifying the types of information1 that

control categorization is crucial for evaluating conceptual

abilities of animals and for interpreting data obtained in studies

of object recognition and the neural basis of visual recognition.

To infer which aspects of a visual stimulus an animal utilizes

in a categorization task, researchers have traditionally manip-

ulated the physical properties of pictures, for instance, by

scrambling images or deleting object parts (reduction proce-

dure; Cerella, 1979; Martin-Malivel & Fagot, 2001b; Vogels,

1999a). The inherent limitation of this procedure is that it is

dependent on the experimenter’s a priori judgment about which

aspects of the picture are relevant to the animal’s classification.

Because pictures are complex and polymorphous stimuli,
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untested perceptual features may contribute to the discrimina-

tion (Fagot, 2000).

The present study was aimed at identifying the information

used by baboons and humans to categorize human and baboon

faces. We used an adaptation of the classification-image (CI)

procedure (Ahumada, 1996, 2002; Ahumada & Lovell, 1971).

The CI method (also termed reverse correlation) has been em-

ployed with complex images such as faces only recently (Gold,

Murray, Bennett, & Sekuler, 2000; Gosselin & Schyns, 2003;

Mangini & Biederman, 2001, 2004), and only in human sub-

jects. Another method, Bubbles (Gosselin & Schyns, 2001;

Schyns, Bonnar, & Gosselin, 2002), estimates which regions of a

picture a subject finds informative, but unlike the CI technique,

does not estimate the specific information used by the observer.

This method has recently been applied to pigeons (Gibson,

Wasserman, Gosselin, & Schyns, 2005). The differences be-

tween the CI technique and Bubbles have been discussed pre-

viously (Gosselin & Schyns, 2004; Mangini & Biederman, 2004;

Murray & Gold, 2004). Because a CI analysis provides a rich set

of data from simple classification responses of any observer

(animal, human, or machine), it is well suited to the study of

comparative cognition.

In the current study, adult humans and baboons were tested

using identical human and baboon pictures. The data were

collected from test trials using a perceptually ambiguous probe

stimulus created to resemble human and baboon faces equally.

When presented in high levels of visual noise, repetitions of

the identical underlying ambiguous stimulus elicited ‘‘human’’

responses on some trials and ‘‘baboon’’ responses on others.

Because the only aspect of the stimulus that differed across

presentations was the randomly generated visual noise that

perturbed the underlying ambiguous image, one can assume that

the response on a given trial depended on which of the observer’s

categories some feature of the noise pattern matched more

closely. By contrasting the average of the visual noise patterns

that elicited ‘‘human’’ responses with the average of the patterns

that elicited ‘‘baboon’’ responses, we were able to discover the

visual information that the subjects used to determine their re-

sponses.

This method compares linear estimates of the information

used by subjects. We do not assume that all of human and ba-

boon vision—especially higher-level vision—is itself linear

(see Mangini & Biederman, 2004, for a discussion of the im-

plications of modeling a classification as a linear process). There

is evidence from single-unit primate studies in V4 and the in-

ferotemporal cortex (Kobatake & Tanaka, 1994; Pasupathy &

Connor, 1999) that neural responses are not linear. Nonetheless,

one can ask whether humans and baboons differ in this linear

component. We should also point out that the vast majority of the

statistics employed in behavioral science and neuroscience

involve linear comparisons, as when reaction time distributions,

spike rates, or blood-oxygen-level-dependent responses are

compared, and whenever a correlation coefficient is calculated.

METHOD

Participants and Apparatus

The participants were 2 adult Guinea baboons (Papio papio; B06

and B07), 1 male and 1 female from the animal facility of the CNRS

(Marseille, France), and 6 humans (H1–H6), 2 male and 4 female

undergraduates from the University of Southern California. They

were trained to discriminate pictures of human and baboon faces in

a computer-controlled go/no-go task. The experiments were ap-

proved by the Comité Régional d’Éthique pour l’Expérimentation

Animale de la Région Provence and by the Institutional Review

Board of the University of Southern California (USC). The exper-

imental stimuli were created with Matlab, using the Psychophysics

Toolbox extensions (Brainard, 1997; Pelli, 1997). The humans

were tested at USC. An in-house Matlab program controlled

stimulus creation, stimulus presentation, and response recording.

The humans responded by pressing the space bar on the keyboard.

The baboons were tested in Marseille. An in-house program

written in Turbo Pascal 5.0 controlled stimulus presentation and

response recording. The baboons responded by manipulating a

joystick. To ensure that image brightness and contrast would be

controlled across presentation systems, we adapted the images to

the monitor used for each species. Photometric measurements

were recorded from the presentation monitor in Marseille and fitted

with a gamma function describing the relation between pixel val-

ues and monitor brightness. For the monitor used with humans,

the gamma value was calculated using a matching procedure and

corrected with color lookup-table adjustments available in the

Psychophysics Toolbox. The stimuli were presented at 128� 128

pixels, subtending a visual angle of 4.51.

Training

Half the subjects had to give a ‘‘go’’ response (baboons moved the

joystick; humans pressed the space bar) when a human face was

shown and a ‘‘no-go’’ response (no movement of the joystick or

space bar for 2 s) when a baboon face was shown. The other half

had to apply the reverse rule. An auditory tone followed each

correct response; in addition, baboons received food pellets, and

humans received a credit of 1b. The baboons were already fa-

miliar with the setup and had been trained previously on go/no-go

tasks requiring joystick manipulation and pattern discrimination

(Martin-Malivel & Fagot, 2001a, 2001b). The human subjects

were instructed that they would be making go/no-go responses,

but were given no verbal instructions indicating what stimuli they

would be seeing or which response to make for which stimuli.

Training for both species involved five phases, as illustrated in

Figure 1. In Phase 1, the subjects categorized 60 gray-scale

pictures of nonfrontal views of unknown humans and baboons.

After performance exceeded 90% correct for both categories,

generalization was demonstrated in Phase 2 with 60 previously

unseen exemplars of the two categories (half nonfrontal and half

frontal views). All subjects performed above 90% correct in the
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first session. In Phase 3, they categorized the original nonfrontal

views, on which sinusoidal random noise had been superim-

posed. The underlying images were equated in spatial frequency

content, contrast, and average luminance. We have previously

described in detail the method used to create the sinusoidal

noise (Mangini & Biederman, 2004). The signal-to-noise ratio

was progressively decreased over the training sessions, thus

rendering the discrimination more difficult. Training continued

until subjects achieved a performance level of 80% correct with

a signal-to-noise ratio of 0.8. Phase 4 consisted of a generali-

zation test in which high-level noise was superimposed on the

frontal views used in Phase 2 and was completed when subjects

were able to achieve accuracy of 80% or greater. Phase 5 con-

sisted of a generalization test in which high-level noise was

superimposed on 30 frontal views of warped faces, in which the

positions of the mouth, nostrils, and eyes and the external shape

were altered to be identical in all images (see the top two rows in

Fig. 2). Subjects performed above chance level. Overall, the

humans required, on average, 1,610 training trials (range:

1,470–2,130) to achieve criterion in the training phases; the

baboons required 2,040 and 2,280 trials.

We have previously discussed the advantages of using sinu-

soidal noise instead of Gaussian white pixel noise (Mangini &

Biederman, 2004; see also Biederman & Kalocsai, 1997). Com-

putational simulations demonstrated that with moderate numbers

of trials (several hundred to tens of thousands), sinusoidal noise

produced a better estimate of the template than did white noise.

CI Computation

After training, the CI method was used to infer the information

employed by the humans and baboons in categorizing the pic-

tures. Subjects completed a categorization test in which high

levels of noise were superimposed on the images (Fig. 2). In this

test, 75% of the trials were baseline trials. The baseline stimuli

consisted of the 30 warped human and baboon faces used in

Phase 5, with different superimposed random visual noise for

each trial (Fig. 2, two top rows). Intermixed with baseline trials

were probe trials (25% of trials), on which an ambiguous face, a

morph between baboon and human faces, was presented (am-

biguous trials). Subjects were not informed about these ambig-

uous trials, for which there was no correct response. Each

subject received 200 sessions of 40 trials (30 baseline trials, 10

ambiguous trials). The ambiguous trials were rewarded ran-

domly at the rate at which baseline trials were responded to

correctly in the previous testing session. The perceptual ap-

pearance of the ambiguous stimulus varied substantially with

the noise pattern, so that it was more humanlike in some trials

and more baboonlike in other trials (Fig. 2, bottom row). Re-

sponses on these ambiguous trials provided data useful for

determining which changes to an image induced a ‘‘human’’ or

‘‘baboon’’ response.

For each trial, the noise pattern was assigned to one of the two

categories on the basis of the observer’s response. After 8,000

trials, we acquired approximately 2,000 categorized noise pat-

terns for a given observer (ambiguous trials). The average in-

tensity for ‘‘baboon’’ classifications was computed, as was the

average intensity for ‘‘human’’ classifications. The CI was then

computed for each subject by subtracting the average ‘‘baboon’’

pattern from the average ‘‘human’’ pattern (a detailed descrip-

tion of this procedure is given in Mangini & Biederman, 2004).

These CIs provide empirically derived linear estimations of

the information utilized by each individual subject (Ahumada,

2002).

Fig. 1. Training stimuli and phases. In Phase 1, the subjects learned to categorize 60 gray-scale pictures (nonfrontal views) as ‘‘human’’ or ‘‘baboon.’’
Phase 2 was a generalization phase in which subjects categorized 60 new exemplars, including frontal and nonfrontal views, of the two categories. In
Phase 3, subjects categorized the original nonfrontal views, on which sinusoidal random noise had been superimposed. Phase 4 was a generalization test
in which frontal views were shown in high levels of noise, and Phase 5 was a generalization test in which frontal views of warped faces were shown in high
levels of noise.
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RESULTS

During testing, the signal-to-noise ratio was varied so that each

subject’s performance was approximately 80% correct. In the

final six testing sessions, subjects achieved stable levels of

performance at average signal-to-noise ratios of 0.5 for the ba-

boons and 0.4 for the humans. A t test showed no threshold

difference between species, t(6) 5 1.225, prep 5 .67. Because

the two species performed at approximately the same level of

accuracy in a perceptually challenging task, it would be

tempting to assume that they used the same visual information.

However, the CI method allowed us to directly compare the

information used by different subjects.

The first column of Figure 3 presents the CIs, which illustrate

the information used by each subject to categorize the pictures

as ‘‘human.’’ The middle column re-creates the typical image

that elicited a ‘‘human’’ response from each subject (i.e., the

combination of the observer’s CI and the original ambiguous

human-baboon morph). The third column shows the typical

image that elicited a ‘‘baboon’’ response (i.e., the result of

subtracting the CI from the original ambiguous morph). These

reconstructions make explicit how the dark and light patches of

each CI affect the ambiguous image.

Inspection of the CIs suggests that the human and baboon

subjects utilized different sources of information to perform the

categorization. A coarse contrast between the eyes and the

surrounding head region appeared to be the baboons’ primary

feature for determining species assignment. The raw CIs for

human subjects show that, although they also utilized informa-

tion around the eyes and the top of the head, they additionally

used some detailed facial features in the lower half of the face.

For example, contrast energy around the nose and chin line

appeared in the CIs for all human subjects, indicating that they

utilized these areas to make their classification. Neither of the

2 baboon subjects used these cues.

Bootstrap Analysis of the CIs

A bootstrap analysis provided a test of whether the baboons’ and

humans’ CIs differed significantly. First, to characterize the

variability within the human population, we compared 1,000

bootstrap sample CIs from a given human subject with 1,000

bootstrap sample CIs from the remaining 5 human subjects. For

each of the 1,000 pairs of samples, similarity was measured as

the correlation between the pixels of the two CIs. This leave-one-

out procedure was repeated for every human, yielding a distri-

bution of 6,000 similarity measures.

Fig. 2. Illustration of the test stimuli with superimposed random noise. Examples of the original clear images used to create the test
stimuli are presented on the left. The top two rows present examples of images presented on baseline trials (75% of the trials): warped
frontal views of either baboon (15 individuals) or human (15 individuals) faces. The bottom row presents the unique ambiguous human-
baboon morph (left) and examples of this morph with superimposed random visual noise, as presented on probe trials (ambiguous trials;
25% of the trials). This morph was created from 10 previously unseen warped images of baboon and human faces, similar to those shown
on the left in the top two rows. Note that the superimposed noise on the morph stimulus rendered the morph more humanlike on some
trials, and more baboonlike on others.
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Next, to determine the similarities between the baboons’ and

humans’ use of information, we compared 1,000 bootstrap

samples pulled from each baboon’s data with bootstrap data from

each of the six leave-one-out human populations. Averaging

across the 6,000 similarity measures gave the average similarity

between a baboon’s information use and the humans’ informa-

tion use. The percentile rank of the average similarity value was

less than 0.5% (for B06) and 0.8% (for B07). The across-species

differences were significantly greater than the within-humans

differences (B06: prep 5 .966; B07: prep 5 .956).

Principal Component Analysis (PCA)

Although the bootstrap analysis provided a test for the planned

comparison of baboons’ and humans’ information use, we also

subjected the CIs (unlabeled as to which species they came from)

to a PCA. The PCA extracted the dimensions accounting for the

greatest variance among the individuals’ CIs. The first principal

component answered the question: What is the greatest differ-

ence among the eight CIs? The first step in the PCA was to

subtract the mean of all the CIs from all the images. This was done

so that the first principal component would represent the di-

mension that accounted for the most variance among the images

(rather than the mean of the images themselves). The principal

components were computed as the eigenvectors of the inner

product of the matrix containing all of the mean-subtracted CIs as

vectors. The eigenvalues of these components represent the

amount of variance accounted for by each principal component.

Results showed that the first principal component (after the

mean of all subjects had been subtracted) accounted for 20% of

the variance (chance 5 14%). Because there is no standard

method for testing the statistical significance of a principal

component, we performed a Monte Carlo simulation. The null

hypothesis tested was that the eight human and baboon CIs were

no more redundant than a set of eight ‘‘random observer’’ CIs.

These random CIs were generated by taking 1,000 randomly

generated noise patterns and randomly assigning them to the

‘‘human’’ and ‘‘baboon’’ categories without any consideration of

their visual structure. The eigen-decomposition of the eight

random CIs was performed as described for the human and

baboon data. The eigenvalues for the random observers were

recorded, and the process was repeated 10,000 times to obtain

a null distribution. The eigenvalue of the first principal compo-

nent of our human-baboon PCA was greater than the eigenvalues

of all 10,000 Monte Carlo simulations (prep 5 .996), showing that

there was more redundancy in the eight human and baboon CIs

than could be expected by chance. In other words, the 20% of

variance accounted for by the first principal component repre-

sents a significantly reliable difference among the subjects.

Figure 4a shows the correlation between each subject’s CI and

the first principal component. This component clearly splits the

subjects into two distinct groups: humans and baboons. The

images to the left of the graph illustrate the information subjects

used to classify the images as human (left) and baboon (right).

The top pictures (row 1) illustrate the information that humans

tended to use, and the bottom pictures illustrate the information

Fig. 3. Individual results. The column on the left shows the classification
image (CI) for each human (H1–H6) or baboon (B06, B07) subject. Each
CI was obtained by subtracting the average of the noise patterns that in-
duced the subject to respond ‘‘baboon’’ from the average of the noise
patterns that induced the subject to respond ‘‘human.’’ The CIs presented
here show the information that each subject used to categorize the pictures
as ‘‘human.’’ The middle column shows the result of adding the CI to the
original ambiguous morph, thus re-creating the typical image eliciting
a ‘‘human’’ response. The column on the right shows the result of sub-
tracting the CI from the original ambiguous morph, thus re-creating the
typical image eliciting a ‘‘baboon’’ response.
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that the baboons used (row 3). Inspection of these images reveals

that the baboons categorized the faces mainly on the basis of

contrast between the eyes and the surrounding head region,

responding ‘‘human’’ in the case of a lighter eye area and ‘‘ba-

boon’’ in the case of a darker eye area, whereas the humans paid

attention to a broader range of facial features, such as the shape

of the nose and mouth and facial contour.

DISCUSSION

The results demonstrate that different species given identical

training regimens can utilize substantially different information

to achieve comparable performance. This difference could not

be discovered from experiments in which only the performance

over all trials was computed, without considering the responses

to individual trials. By correlating observers’ responses to ran-

dom noise patterns trial by trial, we were able to determine that

the two species used different information to achieve successful

categorization. The PCA shows that the largest difference among

the CIs was the difference between the CIs of humans and

baboons. Both baboons relied heavily on the coarse contrast

between the eyes and the surrounding face, unlike humans, who

relied on both coarse and detailed information across the entire

face.

Fig. 4. Results of the principal component analyses (a) for human and baboon subjects and (b) for human and
baboon subjects and two runs of the theoretical observer (TO). The individual bars represent the correlations
between each subject’s classification image and the first eigenvector. The images along the ordinate of each graph
illustrate the dimension accounting for the greatest variance among subjects. The three rows depict, respectively,
the information used by subjects with high positive projections (11) on the first principal component, by subjects
at the midpoint (0 projection), and by subjects with high negative projections (�1) to categorize faces as human
(left) or baboon (right). The subjects with high positive projections tended to use many of the finer details across
the entire face, including the eyes, nose, lips, and jawline, whereas those with high negative projections tended to
use a coarse contrast between the eyes and the surrounding face to make their discriminations.
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These results suggest that the eye region was the primary

focus of attention for the baboons. This finding is reminiscent of

previous findings showing that monkeys freely viewing images of

conspecifics tend to look longer at the eye region than at other

parts of the face (Papio hamadryas: Kyes & Candland, 1987;

Macaca mulatta: Gothard, Erickson, & Amaral, 2004). Because

humans have also been found to focus primarily on the eye re-

gion (Henderson, Williams, & Falk, 2005), this is unlikely to

explain our species differences. Before one can speculate on the

cognitive, social, or evolutionary causes that may underlie the

difference in the CIs of our humans and baboons, one should

consider the inherent information constraints the task and the

stimuli impose on any observer. Any system with the capability

of encoding the training images (simply as the pixels that appear

on the computer display) and storing them in memory should be

able to perform above chance on this classification task. Such a

theoretical observer (TO) needs no prior knowledge of humans or

baboons, no social interests, and no cognitive representations

other than the training images themselves. How similar were our

human and baboon subjects to such a TO? That is, to what extent

did the subjects utilize information that could be learned from

the training images, rather than their knowledge of the ap-

pearance of humans and baboons based on their extensive ex-

posure with members and images of the two species?

To address this question, we created a computational simu-

lation mimicking the performance of a naive TO. The Phase 5

warped training stimuli, uncontaminated by noise, were used to

compute a discrimination template. This was done by computing

the pseudoinverse of a matrix containing all the training images

as vectors of pixel values and multiplying the pseudoinverse by

a vector containing species indicators for every image (1 for

human images, and �1 for baboon images). The result was a

linear least-squares template (Bishop, 1995).

In the simulation, the TO referred to this template to classify

the image in each test trial as belonging to the human or the

baboon category. Each noisy ambiguous image was correlated

with the template; if the result was positive, the face was clas-

sified as ‘‘human,’’ and if the result was negative, the face was

classified as ‘‘baboon.’’ The simulation was run twice, using the

same number of trials as for the human and baboon subjects. CIs

for each run of the TO were computed and directly compared

with the human and baboon CIs. A PCA was run to determine the

dimension that accounted for the greatest variance among the 10

CIs (6 human CIs, 2 baboon CIs, and 2 TO CIs). The first prin-

cipal component accounted for 18% of the variance (chance 5

11%, Monte Carlo calculation: prep 5 .996) and revealed that the

CIs for the baboons and the TO were highly similar and mark-

edly different from those of the humans (Fig. 4b).

The computational simulation reveals what is the simplest and

nearly optimal strategy to solve this two-alternative picture

categorization task, which involves a limited set of images. Is it

possible that the TO reflects the optimal strategy to categorize

real-life humans and baboons in natural settings? Because the

TO was trained on a limited number of 2-D images (15 pictures

per category), photographs taken under specific lighting con-

ditions, we do not believe that it fully reflects the optimal way to

sort human and baboon 3-D faces in natural settings. The finding

that the baboons’ and TO’s results were very similar demon-

strates that the baboons were highly efficient at ascertaining the

relevant information for this specific visual task. It suggests that

they relied on the perceptual appearance of the warped training

and test stimuli so that their CIs resembled that of the TO. This

result is consistent with findings indicating that animals do not

always process pictorial stimuli the way humans do, and do not

readily recognize objects from 2-D representations (Fagot,

2000). We believe that even in situations in which monkeys

recognize represented objects in laboratory tasks, they tend to

use low-level stimulus characteristics, when available, to solve

the tasks. For instance, we (Martin-Malivel & Fagot, 2001b)

showed that baboons considered only facial contours to dis-

criminate clear pictures of known caregivers.

Though our baboons regularly encounter both other baboons

and humans in their daily lives, their reliance solely on the

training images means that they did not refer to this experience

when categorizing our stimuli. Why they chose not to use their

everyday experience (or could not do so) is beyond the scope of

the present investigation. In contrast, information not specified

by the training stimuli seemed to play a key role for the human

subjects. We assume that for the humans, conceptual repre-

sentations of real-life human and baboon faces formed prior to

the experiment were critical.

Our findings should encourage detailed investigations of how

animals perceive and process 2-D images in laboratory settings.

Animals are broadly used as models to investigate the nature

and neural bases of various cognitive phenomena, such as cat-

egorization (Delorme et al., 2000; Herrnstein & Loveland, 1964;

Vogels, 1999a, 1999b), face perception (Bruce, 1982; Parr &

de Waal, 1999; Perrett et al., 1986), object recognition (Vogels,

1999b), imitation (mirror neurons; Rizzolatti & Arbib, 1998),

and social behavior (Brothers, Ring, & Kling, 1990). These

studies often rest on the assumption that the animals process

pictorial information in the same manner as humans do. This is

not necessarily the case, however, even when their performance

is strikingly similar to that of humans, as demonstrated in the

present study.

The CI method used here can characterize the information

employed by different species and allows explicit comparison

of subjects’ performance with theoretical models to provide a

greater understanding of interspecies differences at an infor-

mation-processing level. Given the need to use animal data to

understand the neural bases of human perception and cognition,

the development of methods that make explicit the representa-

tions underlying human and animal perception is essential.
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