Background

* Several studies have shown evidence for object-centered tuning in macaque V4 and IT, as well as human LOC.
* Other studies have shown that attention can change receptive field properties.
* Computational models of “shifter circuits” explicitly predict a transformation of the coordinate system of the visual representation from absolute to object-centered space.
* Standard retinotopic paradigms confound object-centered position and retina-centered position.
* Could there be an object-centered map in LOC?

Methods

- **Experiment 1**: 4 Screen rotations per run (72s each)
- **Experiment 2**: 12 Screen rotations per run (32s each)
- **Experiment 3**: 12 Screen rotations per run (32s each)

Results - Experiment 1

Within-Object Puzzle Piece

The number of voxels with a First, Second, or Third peak in the Fourier magnitude spectrum at each frequency was counted for four different regions of interest (V1, V4, LO, and pFs).

Results - Experiment 2

Within-Object Border Shape

Results - Experiment 3

Between-Object Relations

Conclusions

* There is no millimeter-scale object-centered coordinate map in LOC.
* The vast majority of the voxels, in all subjects, showed stronger modulation to changes in absolute (screen) position than object-centered position.
* Thus it is likely that the circuits that mediate object-centered coding are smaller than the scale of MRI voxels.
* Consistent with other results showing sensitivity to object-centered position in V4 and LOC, a secondary modulation of activity, i.e., a second peak in the Fourier spectrum at the frequency of the object-centered rotation, was observed in ~20% of the voxels in V4 and LO in experiments 1 and 2.
* A productive direction for future work would be to determine whether the object-centered location of attention could be read out of higher-level visual areas using multi-voxel classifiers, the same way orientation can be read out of earlier visual areas.

Acknowledgments

Mark D. Lescroart, Kenneth J. Hayworth, Irving Biederman
University of Southern California Neuroscience Program

Supported by NSF BCS 04-20794, 05-31177, 06-17699 to I.B.