Background

- Object structure can be defined as the axes specifying the relations among an object's parts.
- Lesions to the ventral stream can produce an agnosia for object structure but leave intact the perception of the shapes of the individual parts (Behrmann et al., 2006).
- Although there have been some human fMRI studies investigating object representations in ventral visual areas, these studies have not addressed object structure specifically. With stimuli that vary in color, texture, and evolutionary significance (e.g., Haxby et al., 2001; Kriegeskorte et al., 2008), one cannot make inferences about the role of object structure—or even object shape—in determining ventral stream response patterns.
- PROBLEM: Could the BOLD signal in ventral visual areas distinguish groups of objects that differed only in their axis structures?

Methods

- Stimuli were nine or fifty-four images of novel objects (see above).
- The images appeared as white-on-black line drawings with no shading or texture. Images appeared for 750 ms (9 object experiment) or 200 ms (54 object experiment) with an 8-second ISI. One image appeared on each trial.
- MRI parameters: whole-brain scan of 2x2x2 mm voxels (9 object experiment) or 2x2x5 mm voxels (54 object), 31 slices, TR = 2 s.

- Regions of interest were defined for each subject in independent localizer scans.
- For each region of interest, a support vector machine (SVM) classifier was trained on 7 runs of the object data and tested on the 8th run, in order to test whether common axis structure and/or common body orientation produced consistently differentiable patterns in each region.

- Chance levels for classification accuracy were determined by classifying with random trial labels 100 times in each ROI.
- To test different classification schemes against one another, correctly-labeled images were re-assigned to arbitrary categories (one of 280 possibilities for 9 images is shown above). A histogram of the 280 classifiers' accuracies in V1 and in LO is shown below to the left. These distributions of classification accuracy were used to create z scores for the grouping schemes of interest.

Results: 9 Objects

- Classify by Axis Structure
- Classify by Cone Position
- Classify by Body Orientation

Results: 54 Objects

- Classify by Axis Structure
- Classify by Component Parts Body Orientation
- Classify by Component Parts Body Orientation

Conclusions

- The Lateral Occipital (LO) area encodes not only an object's parts (Hayworth & Biederman, 2006) or local features (Op de Beeck et al., 2008), but also its axis structure.
- LO is more sensitive to the axis structures of objects than to their global orientation, and this coding of axis structure is independent of local parts or features.
- The coding of axis structure in LO is modulated by attention, but the response pattern in LO is not wholly determined by attention.

References